
Malware Analysis
August 29, 2025 | Ty Qualters

Introduction
For this malware analysis, I used a REMnux virtual machine. The network was configured to
use NAT with the host running ProtonVPN to help prevent leaking my public IP address. The
variant for today’s analysis is another sample from MalwareBazaar. It is a potentially
malicious PowerShell script. The sample can be obtained here:
https://bazaar.abuse.ch/sample/7309e3ed236fcf61a68680a73fc6f8c740476504cac0dd6b
2dd31b7331fec7e9/.

Cyber Threat Intelligence (CTI)
(Available on MalwareBazaar.)

YARA Rules:

• detect_powershell – Detects suspicious PowerShell activity related to malware
execution

• Detect_PowerShell_Obfuscation – Detects obfuscated PowerShell commands
commonly used in malicious scripts.

• Sus_CMD_Powershell_Usage – May Contain(Obfuscated or no) Powershell or CMD
Command that can be abused by threat actor(can create FP)

• WIN_ClickFix_Detection – Detects ClickFix social engineering technique using
'Verify you are human' messages and malicious PowerShell commands

Detections:

• CyberFortress (Malicious)
• Neiki (Malicious)
• Hatching Triage (Malicious)
• Spamhaus (Suspicious)

Origin: Italy

VirusTotal: (See picture below.)

https://bazaar.abuse.ch/sample/7309e3ed236fcf61a68680a73fc6f8c740476504cac0dd6b2dd31b7331fec7e9/
https://bazaar.abuse.ch/sample/7309e3ed236fcf61a68680a73fc6f8c740476504cac0dd6b2dd31b7331fec7e9/

Phase 1: Static Properties Analysis

In the above pictures, it is safe to conclude that this file is just a PowerShell script. There is
no trickery with file extensions or naming conventions or anything of that sort.

Phase 2: Dynamic Analysis
For the dynamic analysis, I decided to use AnyRun. If I had more resources available to me,
I would have taken the time to test the script in my own sandbox as well.

AnyRun concluded that this file is malicious. However, details are needed to justify it.

Connections
After running this script, vovsoft[.]com opened in Microsoft Edge. There was a clear button
to download the software and another to purchase the software.

Below, I only included the suspicious traffic.

DNS Requests

• bilaskf[.]com
• vovsoft[.]com

HTTP Requests

• 6948 | powershell.exe | hxxp[://]bilaskf[.]com/dllstart
• 6948 | powershell.exe | hxxp[://]bilaskf[.]com/apif/a/a

TCP Requests

• 6948 | powershell.exe | 104[.]21[.]40[.]62 | 80 | bilaskf[.]com
• 7004 | bl.exe | 104[.]21[.]40[.]171 | 443 | vovsoft[.]com

Behavior
Looking at the activity below, it appears that the script ran conhost.exe and dropped a
payload (bl.exe) into the local Pictures directory. That was the dropped payload that
appears to have started MS Edge.

A nice new feature in AnyRun is its Actions list.

Memory usage appeared to spike. The last bit of yellow was most likely from MS Edge.

Indicators of Compromise (IOCs)
AnyRun provides a list of IOCs. I intentionally excluded the dropped files because other
than the primary payload, I was unsure what would have been generated by MS Edge,
which was spawned as a child process.

Note: 172[.]67[.]40[.]171 might be an alternate A record for vovsoft[.]com.

Processes Graph
Below shows the process graph.

Looking into conhost.exe, both instances showed “C:\WINDOWS\system32\conhost.exe
0xffffffff -ForceV1.” (I did not know what these flags did, so I asked ChatGPT.)

ChatGPT thought that this malware was trying to live off the land with conhost.exe.

MITRE ATT&CK

(The techniques seems to be misplaced in the matrix above.)

• Execution (TA0002)
o Command and Scripting Interpreter (T1059)

▪ PowerShell (T1059.001)
▪ Windows Command Shell (T1059.003)

• Defense Evasion (TA0005)
o Impair Defenses (T1562)

▪ Disable Windows Event Logging (T1562.002)
• Discovery (TA0007)

o Query Registry (T1012)
o System Information Discovery (T1082)
o File and Directory Discovery (T1083)

https://attack.mitre.org/tactics/TA0002/
https://attack.mitre.org/techniques/T1059/
https://attack.mitre.org/techniques/T1059/001/
https://attack.mitre.org/techniques/T1059/003/
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1562/
https://attack.mitre.org/techniques/T1562/002/
https://attack.mitre.org/tactics/TA0007/
https://attack.mitre.org/techniques/T1012/
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1083/

At this point, it is safe to conclude that the PowerShell script is malicious. Details about the
payloads were still in question.

Mitigation Strategies
Before continuing onto the static analysis, with the information provided above, there may
be some ways to mitigate this threat:

1. Disable running user scripts.
2. Flag the fingerprints (hashes) of the PowerShell script and the dropped payload

(bl.exe).
3. Create a firewall rule for traffic to the domains and IP addresses.
4. Create a process rule that forbids conhost.exe from running with 0xffffffff.

Optionally also disallow -ForceV1 on conhost.exe.
5. And any additional mitigation strategies listed by each ATT&CK technique or sub-

technique.

Phase 3: Static Analysis
Note: I did not intend to try and completely reverse-engineer this. That would take
extremely long to do. Instead, my goal was to identify what the dropped files from the script
were, and at least 1 malicious technique in disassembly if possible.

The above PowerShell was not heavily obfuscated. The comments were in Cyrillic. A little
clean-up work and translating can make this script easy to understand.

Example:

Above, bLExE represents the bl.exe payload.

I translated the comments from Russian to English. I also cleaned up the variable names.

The script’s comments tell what exactly it does. However, it does not say what oleacc.dll is
or what it is used for. My thought was that it was a dependency of bl.exe since they were
dropped in the same archive.

Starting with the endpoints, I first investigated the DLL start endpoint. It was just a basic
HTTP GET request.

It did not respond with any data. It also did not seem to really do anything. My guess is it
could be an IP grabber. The script just sends the request, providing no additional data, and
ignores any responses.

Now the payload.

(I went to sleep before starting this portion of the analysis. The malicious .zip file containing
the payload seems to have been removed from the webserver. Luckily, AnyRun keeps
copies.)

Now there is oleacc.png and bl.exe.

oleacc.dll
First, I renamed oleacc.png to oleacc.dll as the bad actor did in the script.

This file was extracted as an image and then renamed to be a DLL before being used.
Considering this is a possible Defense Evasion technique, I hoped that VirusTotal would
have some interesting things to say about it.

Not anything particularly interesting, other than the fact that it claims to be FFmpeg. After
some research, I found that avfilter-9.dll is a legitimate FFmpeg DLL. I assumed that this

meant that it was just a normal dependency for the malicious payload. That meant that
bl.exe was going to use it.

(No symbol table for a library is generally quite suspicious. At this point in time, I didn’t
think much of it.)

While no vendors detect it, a good review of Behavior shows that bl.exe might try and
exfiltrate data and establish persistence through various methods.

The first thing I did here was dump the file strings into a text file so I can review them for
anything suspicious.

Reviewing the strings, it was evident that bl.exe was created using RAD Studio.

I got tired of scrolling, so I just grep’d for IPs and domains. The certum.pl domain is a
Trusted Poland domain according to Talos Intelligence.

There was not much to go off of here. I chose to use BinaryNinja to analyze the executable. I
therefore had to upgrade REMnux from Ubuntu 20.04 LTS to Ubuntu 22.04 LTS because
BinaryNinja no longer supports it.

Switching from Linear view to Triage Summary, I could confirm that the DLL is imported by
this module.

After some investigating, this binary is most likely made with C++Builder. The msvcrt.dll
library was linked, there are many similar symbol names, and C++ Boost is included.

At this point, it was overwhelming trying to figure out every symbol. I decided to focus more
on the behavior observed in the dynamic analysis.

Looking for strings related to the behavior, I noticed that none of them were present.
Additionally, I researched vovsoft[.]com and it appeared to be a very legitimate service.
Researching the DLL (oleacc.dll) that came with it, it is pre-installed with Windows. That
meant that it was time to give up on the executable and focus on the DLL.

For context, this scenario is a potential DLL Sideloading attack (T1574.001). It is most likely
not the executable that is malicious, but one of its libraries. This specific DLL has been

https://www.file.net/process/oleacc.dll.html
https://techzone.bitdefender.com/en/tech-explainers/what-is-dll-sideloading.html
https://attack.mitre.org/techniques/T1574/001/

known for DLL side loading attacks. See https://hijacklibs.net/entries/microsoft/built-
in/oleacc.html.

What is unique about Windows DLLs compared to Linux SOs is the presence of a DllMain
function. Instead of looking straight for indicators, I decided to look for that function first.

The _start function was DllMain.

https://hijacklibs.net/entries/microsoft/built-in/oleacc.html
https://hijacklibs.net/entries/microsoft/built-in/oleacc.html
https://learn.microsoft.com/en-us/windows/win32/dlls/dllmain

I attempted to search the strings for registry keys, domain names, service names, etc. I was
unable to locate any process names as strings anywhere. I also looked for WINAPI
functions like CreateProcess, CreateRemoteThreadEx, NtCreateUserProcess, etc. None of
those could be found in use.

I did end up finding a section that looks like it clears an Event Log.

Ref: https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-
resetevent

I realized that a lot of Windows functions were wrapped. I do not know if this was an
intentional effect or if this was the result of linkage, but what I do know is that for cross-
referencing WINAPI functions, I needed to seek the original function call.

https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-resetevent
https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-resetevent

Later, I found an Anti-Debug check. If I had a custom Windows sandbox environment to test
in, I could find the function signature and NOP it out to attach a debugger.

You can read more on IsDebuggerPresent here.

A debug check is usually done prior to anything important. I would have followed it, but
there wasn’t any cross-reference information with its symbol.

https://learn.microsoft.com/en-us/windows/win32/api/debugapi/nf-debugapi-isdebuggerpresent

Suspicious findings

[Next Page]

[Next Page]

[Next Page]

Static Analysis Conclusion
The static analysis was incredibly difficult to conduct because:

1. Functions are not directly called by their base address.
2. Data in functions is dynamically set (not using the static string structure).

a. Passed by args, making it difficult to trace and reconstruct.
3. Function names are stripped (common in production builds).
4. This DLL had a ton of symbols related to graphics libraries like Vulkan, OpenCL,

libplacebo, GDI, etc. This cluttered the symbol table.

I was unable (in a reasonable amount of time) to find the actual source of the malicious
activity, but I was able to find enough suspicious activity – anti-debug and process walking
in a DLL that’s intended to be a native Windows library – to determine that this file is
malicious beyond a reasonable doubt.

Another CTI Review
• VirusTotal has 4 detections of the DLL as malicious

o CrowdStrike Falcon: Malicious Confidence 100%
o Sohpos: Mal/Generic-S
o ESET-NOD32: Win64/Loader.Lycaon.C
o Tencent: Malware.Win32.Gencirc.149c7fb8

[Next Page]

• The vovsoft[.]com address is most likely safe and even the attached bl.exe is most
likely safe.

• The original script is detected by various YARA rules.

Final Assessment
1. The user executes the PowerShell script.
2. The PowerShell script sends a simple GET request to bilaskf[.]com.
3. The script downloads a .zip file from bilaskf[.]com.
4. The script extracts two files into the local user Pictures directory: oleacc.png and

bl.exe.
5. The script renames oleacc.png to oleacc.dll.
6. The script then creates a new command prompt instance with the hidden flag to

hide it from the user; the command prompt executes bl.exe.
7. The bl.exe executable opens the default search browser and navigates to

vovsoft[.]com. (Expected behavior of the normal application.)
8. Being in the current working directory, when bl.exe (originally mergexml.exe)

searches for oleacc.dll, it finds the extracted and renamed oleacc.dll before the
system’s official oleacc.dll.

a. This is an example of DLL Sideloading.

9. From there, oleac.dll’s DllMain executes, evidently running anti-debugging and
process walking techniques. CTI suggests that it also tries to inject itself into other
processes and sets up various forms of persistence.

10. From the findings above, it is very possible that bl.exe is not malicious and is only
included as a portable attack vector. Furthermore, oleacc.dll (originally oleacc.png)
is malicious beyond a reasonable doubt.

11. The oleacc.dll binary incorporates various anti-reverse engineering techniques that
make it extremely difficult to analyze.

